

Charrette Tasks

- 1. To inform and to be informed
- 2. To take preliminary steps toward developing a vision for the area
 - What are the forces that cause land-use change in the region?
 - What are the policies and investments that you would like to see implemented in the region?

Overview

- Background
- Understanding LEAM
- Meeting objective
 - Drivers and Scenarios
- Generic LEAM
- Specific tasks

Background

Planning for a Region

Finding answers to three questions

- Where are we now?
- Where do we want to be?
- How do we get there?

Where have we been?

Where are we now?

LAND COVER IN THE KISHWAUKEE RIVER BASIN

Where Do We Want to Be?

- This question is harder to answer
 - Requires a vision for the region
 - Requires communal consensus
 - But wishful thinking is not very useful
- Must know future land-use patterns resulting from
 - Economic, social, and environmental forces
 - Public policies and investment decisions
- For example, the proposed new IL-MO bridge
 - Do we know how it will affect land-use patterns?

The Landuse Evolution and Impact Assessment Model

A Scenario Modeling Tool

University of Illinois Department of Urban and Regional Planning

Simulating Land-Use Change

- What factors cause change and how?
 - Translate this into mathematical equations
- Computers simulate changes over space and time
 - Alter equations to play out different scenarios

LEAM

- Models mechanisms of land-use change and impacts
 - Allows playing out and evaluating scenarios
 - Policy choices, public investments, economic and demographics trends
- Hybrid modeling approach
 - regional and cell-based drivers of change
- Cell-based models run in high-performance computing environments
 - Large regions at a very fine resolution
 - Change in 30m x 30m cells across a 5500 sq. mile region

Simulation Results

Simulation Summary

Scenario Comparisons

impact assessmen

Probability Maps

Impacts

- Storm water/flood damage
- Loss of open space
- Water quality
- Air quality
- Traffic congestion
- Education
- Workforce development

Fiso

School Costs Analysis

Habitat Fragmentation

- Landscape consideration
 - spatial arrangement of potential habitat is important

pLEAM Fragmentation

Spatial results

Exogenous Approach LEAM/Transportation Model Interface

- Linking land use change with transportation models
- Impacts of Land Use on Traffic Congestion

CUBE

CUBE Model Output

Output Detail

- 2025
 - Bridge congestion
 - Illinois growth and congestion

User Interface

Drivers and Scenarios

- Understanding Drivers
- Understanding Scenarios

Understanding Drivers

- Drivers are factors that influence
 - Where new growth takes place
 - Where decline takes place
- Example from Peoria

Understanding Drivers

- Drivers are factors that influence
 - Where new growth takes place
 - Where decline takes place
- Example from Peoria
 - Forests are attractors of growth

Peoria: New Housing and Forests

Understanding Scenarios

- Scenarios describe different interesting policy choices or public investments
- Example from Peoria

Understanding Scenarios

- Scenarios describe different relevant policy choices or public investments
- Example from Peoria
 - Construct a new eastern by-pass around the city

Scenario: New Road Construction

Charrette Task

To create a LEAM for Kishwaukee Basin

- What are the most important drivers of land-use change in the region?
- What are scenarios of interest to the region?
 - Public policy choices
 - Public investment decisions

Process

- Examine generic LEAM land-use simulations
 - In what ways are they unsatisfactory?
 - What drivers could be added to make them better?
- Identify and prioritize Kishwaukee drivers
- Identify and prioritize Kishwaukee scenarios

Generic LEAM

LEAMg

- LEAM with an incomplete set of drivers
 - Uses National data sets
 - No local information
- Does <u>NOT</u> represent our best guess for the future of the area
- Intended to initiate a dialogue in the region

What Drivers Are Included?

- Census Data
 - Provides county by county population projections
 - Aggregated to entire region
- Municipal Boundaries
 - Growth trends attracts development to existing communities
- Cities Attractor
 - Gravity model based on travel times
- Transportation Drivers
 - Ramps
 - Major intersections
 - Highways
 - County Roads
- Elevation
 - High slopes discourage development

What Drivers Are Included?

- Water
 - Attracts open space
- Neighborhood development
 - Development is attracted by other development
- Utilities
 - Are utilities available in the area
- No Growth Zones
 - Military Bases
 - National Forest Areas

Building LEAMg for the K Basin

Nine County area

Driver Example

StL major cities attractor example

Kish LEAMg Results

Kish LEAMg Results

Kish LEAMg Summary

Kish LEAMg Summary

Existing Urban Areas

Kish LEAMG Summary

Rockford

Kish LEAMG Summary

McHenry County

Kish LEAMg Summary

Walworth County

Changes in Land Use

Landcover Classification	Initial Land Use	High Growth 2025	Moderate Growth 2025	Low Growth 2025
Water	38887	38887	38887	38887
Residential	120169	147394	141931	138712
Commercial/ Industrial	28248	34592	33322	32571
Forested	288225	274578	276726	278213
Grasslands	19207	18008	18234	18355
Agricultural	2173147	2160678	2163519	2165121
Urban Openspace	36160	40703	39799	39253
Others	693596	682799	685223	686528
Total	3397640	3397640	3397640	3397640

Urban Increases by County

in Acres

Urban Increases by County

percenatge increases

Specific Charrette Tasks

Specific Tasks for Teams

- Examine generic LEAM land-use simulations
 - In what ways are they unsatisfactory?
 - What drivers could be added to make them better?
- St. Louis Metro Drivers
 - Separately: Identify drivers
 - Collectively: Review and prioritize
- St. Louis Metro scenarios
 - Separately: Identify scenarios
 - Collectively: Review and prioritize
- Review the Process

Conclusion

Planning for a Region

Finding answers to three questions

- Where are we now?
- Where do we want to be?
- How do we get there?

LEAM Technology

- Models causal mechanisms of land-use change explicitly
- Simultaneously models impacts of change
- Runs in high-performance computing environments (massively parallel)
 - Can handle large regions at a fine resolution (30m x 30m)
- Can integrate with external models
 - Exogenous models
- Can examine system feedbacks
 - Endogenous models

More Information

www.leam.uiuc.edu

deal@uiuc.edu

